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Landau theory of phase transitions

The description of coexisting phases in a given material is a very
complex topic, combining different perspectives from statistical
physics, thermodynamics, material sciences and mathematical
analysis.

Also, the specific case under consideration may require a different
setting, given the different underlying physical structures involved:
for instance, while in our everyday life we are mostly exposed to the
changes of state related to melting, freezing, vaporization and
condensation, other important phase transitions, such as the one from
a conducting to a superconducting state, are the outcome of brand
new properties of the solid state, such as electron coupling.
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Landau theory of phase transitions

A common treat in the study of phase transitions is to describe a given
system in terms of relevant physical quantities, such as temperature T ,
pressure P, volume V , entropy S, magnetic moment M, etc.

The energy of a system is thus an outline of its ability to perform
some tasks.

In this performance, however, the system typically wastes some
energy in the form of heat.

The “useful energy”, that is the energy that is available to do work,
thus consists in the difference between the full internal energy of the
system minus the energy that is “unavailable to perform work” since it
gets lost through heat.

Being “free to do the work”, such energy is often called free energy,
though the name is under an intense debate.
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Landau theory of phase transitions

Hence, the minimizers (or, more generally, the stable critical points)
of this energy correspond to observable states of our system.

The system may present significantly different features, or “phases”,
such as being in a solid or fluid state, or having a magnetic
momentum, or presenting superfluid or superconductor properties,
and the appearance of these phases may be seen as an outcome of
energy minimization.

10 / 169



Landau theory of phase transitions

Hence, the minimizers (or, more generally, the stable critical points)
of this energy correspond to observable states of our system.

The system may present significantly different features, or “phases”,
such as being in a solid or fluid state, or having a magnetic
momentum, or presenting superfluid or superconductor properties,
and the appearance of these phases may be seen as an outcome of
energy minimization.

11 / 169



Landau theory of phase transitions

The arising of different phases may be the outcome of a critical
physical parameter involved in the free energy, such as temperature: a
“disordered phase” typically corresponds to a high temperature, while
an “exceptionally ordered phase” arises at low temperatures.

This is the case, for instance, for magnetization, since magnetic
materials have no permanent magnetic moment above their Curie
Temperature (about 570 degree Celsius for the usual magnetite) but
below this temperature the atoms tend to behave as tiny magnets
which spontaneously align themselves, so that the magnetic materials
show a permanent magnetization oriented in a certain direction.
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Landau theory of phase transitions

When the temperature T is above the Curie Temperature Tc, in the
absence of external sources a magnetic system lies in a zero field
state, which happens to be a minimal configuration for the free energy
corresponding to its temperature.

When the temperature is decreased below such critical
temperature Tc, the system will go through a state in which the
magnetization is still zero, but this corresponds only to a critical point,
not a minimum of the free energy, making this equilibrium
configuration totally unstable.

Below the critical temperature Tc, small perturbations from the
environment will inevitably induce the system to reorganize its
microscopic structure to preserve a zero average but creating regions
with a nontrivial magnetic momentum.
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Landau theory of phase transitions

The formation of these magnetic domains will produce a
supplementary interfacial energy, which, in some sense, favors
domain segregation with a phase separation which is “as small as
possible”.

Such a phase separation also produces a symmetry breaking: the free
energy is symmetric (since it weighs equally, say, the magnetizations
oriented towards the North pole and the ones oriented towards the
South pole), nonetheless the magnetization configuration reached by
the system during the cooling is somewhat accidental, as a result of
small environmental perturbations, making the final state reached by
the system not necessarily symmetric.

18 / 169



Landau theory of phase transitions

The formation of these magnetic domains will produce a
supplementary interfacial energy, which, in some sense, favors
domain segregation with a phase separation which is “as small as
possible”.

Such a phase separation also produces a symmetry breaking: the free
energy is symmetric (since it weighs equally, say, the magnetizations
oriented towards the North pole and the ones oriented towards the
South pole), nonetheless the magnetization configuration reached by
the system during the cooling is somewhat accidental, as a result of
small environmental perturbations, making the final state reached by
the system not necessarily symmetric.

19 / 169



Landau theory of phase transitions

The formation of these magnetic domains will produce a
supplementary interfacial energy, which, in some sense, favors
domain segregation with a phase separation which is “as small as
possible”.

Such a phase separation also produces a symmetry breaking: the free
energy is symmetric (since it weighs equally, say, the magnetizations
oriented towards the North pole and the ones oriented towards the
South pole), nonetheless the magnetization configuration reached by
the system during the cooling is somewhat accidental, as a result of
small environmental perturbations, making the final state reached by
the system not necessarily symmetric.

20 / 169



Landau theory of phase transitions

To account for the phenomena of phase transition and phase
coexistence, one can consider an order parameter η which describes
how every point of the system is “organized” with respect to a given
notion of phase.

The order parameter can be either a scalar or a vector: for instance, in a liquid-gas
phase transition the order parameter corresponds to the difference of the densities
between the two phases, which is a scalar, while in superfluidity and
superconductivity it is a complex-valued wave function (or, equivalently, a
two-dimensional vector), and for ferromagnetic momenta it is in general a
three-dimensional vector.

Phase transitions also occur in cosmology, since as the universe expanded and
cooled, a number of symmetry-breaking phase transitions occurred, and the
description of these phenomena often relies on an order parameter which is a tensor.

Here we only consider the case in which the order parameter η is a scalar function.
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The second-order theory of phase transitions

Consider a critical situation in which phase separation occurs.
Assume that the free energy presents the Taylor expansion

a0 + a1η + a2η
2 + a3η

3 + a4η
4 + . . . ,

where the coefficients a0, a1, a2, a3, a4, . . . , depend on relevant
physical quantities, say the temperature T of the system.

Suppose the free energy is symmetric with respect to the order
parameter (say, assuming that the deviations from the neutral case
equally affect the energy): then, the odd coefficients must vanish, thus
reducing the free energy (up to higher orders) to

a0 + a2η
2 + a4η

4.
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The second-order theory of phase transitions

The coefficient a0 is irrelevant to determine the critical points, but the
coefficients a2 and a4 play an essential role. So, we can think that a0
is just a constant, while a2 = a2(T) and a4 = a4(T) depend on the
temperature T .

If we expect the state parameter η to be confined in a bounded region
(which is typically the case, since we do not expect that a physical
parameter tends to diverge), it is convenient to assume that a4(T) is
positive for all T (in this way, the free energy is bounded from below
and possesses minima for all T).

To model the spontaneous formations of new phases below the critical
temperature, one may suppose that

a2(T) > 0 for all T > Tc and a2(T) < 0 for all T < Tc.
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The second-order theory of phase transitions

Assuming that a2 varies continuously with respect to T ,

a2(Tc) = 0.

In this way, one readily checks that the critical points are
{0} if T ≥ Tc,

−√
−

a2(T)
2a4(T)

, 0,

√
−

a2(T)
2a4(T)

 if T < Tc.
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The second-order theory of phase transitions

Furthermore,

the critical point 0 is a nondegenerate minimum when T > Tc,

a degenerate minimum when T = Tc,

and a local maximum when T < Tc,

while ±

√
−

a2(T)
2a4(T)

are nondegenerate minima when T < Tc.
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The second-order theory of phase transitions

As an example, suppose

Tc := 2, a0 :=
1
4
, a2(T) :=

T − 2
2

and a4(T) :=
1
4
.
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The second-order theory of phase transitions

The minimizers of the free energy in this case are{0} if T ≥ 2,{
−

√

2 − T ,
√

2 − T
}

if T < 2,
(1)
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The second-order theory of phase transitions

The bifurcation diagram for the minimizers is therefore
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The second-order theory of phase transitions

This bifurcation diagram represents a situation in which the order
parameter exhibited by the system changes continuously with respect
to the temperature.

Namely, if the free energy depends continuously on the
temperature T , then the new minima when T < Tc can be seen as a
continuous modification of the null state, since they are given
by ±

√
2 − T for T < 2.

Interestingly, the dependence of these minima on the temperature T is
not in general smooth, due to the presence of the square root.

In jargon, the situations in which the observed order parameter
depends continuously on the temperature are called second-order
phase transitions.
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The second-order theory of phase transitions

The name possibly comes from this: if we evaluate the free energy at
the minima, we obtain the free energy as a function of temperature

E(T) :=


a0 if T ≥ Tc,

a0 −
a2

2(T)
2a4(T)

+
a4(T) a2

2(T)

4a2
4(T)

if T < Tc,

=


a0 if T ≥ Tc,

a0 −
a2

2(T)
4a4(T)

if T < Tc.
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The second-order theory of phase transitions

Moreover,

E
′(T) =


0 if T > Tc,

−
a2(T) a′2(T)

2a4(T)
+

a2
2(T) a′4(T)

4a2
4(T)

if T < Tc,

whence
lim

T↗Tc
E
′(T) = 0 = lim

T↘Tc
E
′(T).

Accordingly, the first derivative with respect to temperature of the
“free energy as a function of temperature” vanishes continuously at
the critical temperature.
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0 if T > Tc,

−
(a′2(T))2

2a4(T)
−

a2(T) a′′2 (T)
2a4(T)

+
a2(T) a′2(T) a′4(T)

a2
4(T)

+
a2

2(T) a′′4 (T)

4a2
4(T)

−
a2

2(T) (a′4(T))2

2a3
4(T)

if T < Tc,

leading to

lim
T↗Tc

E
′′(T) = −

(a′2(Tc))2

2a4(Tc)
while lim

T↘Tc
E
′′(T) = 0.

In particular, if Tc is a nondegenerate zero of a2 (as it happens for
instance in the model case),

lim
T↗Tc

E
′′(T) < 0 = lim

T↘Tc
E
′′(T).
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The second-order theory of phase transitions

Thus the second derivative with respect to temperature of the “free
energy as a function of temperature” presents a discontinuity at the
critical temperature.

Maybe, this is the justification of the name of “second-order phase
transitions”...
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The second-order theory of phase transitions

Here is a sketch of the functions E and E′ in the model case:
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The second-order theory of phase transitions

From a physical point of view, the discontinuities of E′ at the critical
temperature are related to the latent heat (roughly speaking, the
energy released or absorbed by the system in a phase change without
changing its temperature), hence the second-order phase transitions
correspond to the absence of latent heat.
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The second-order theory of phase transitions

A heuristic explanation of the link between the latent heat and the
possible discontinuities of E′ can be obtained as follows.

Consider a system undergoing a phase change at temperature Tc,
keeping the other physical parameters constant. The derivative with
respect to temperature of the free energy corresponds, up to a sign
change, to entropy, hence

S = −E′.

Also, by the Second Law of Thermodynamics,

dS =
dQ
T
.

In this way, we formally have that

dQ = T dS = −T dE′ = −T E′′ dT .
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The second-order theory of phase transitions

But we need to interpret this equation with a pinch of salt,
since dE′ = may be not classically defined at Tc (due to the possible
discontinuities of E′ at the critical temperature).

Therefore, possibly integrating a Dirac’s Delta,

Q(Tc + ε) − Q(Tc − ε) = Tc

(
E
′(Tc + ε) − E′(Tc − ε)

)
.

This shows that a discontinuity of the derivative of the free energy at
the critical temperature corresponds to a latent heat proportional to
such a discontinuity times the critical temperature.
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The first-order theory of phase transitions

In many physical situations, however, the change of the state of a
substance at its critical temperature is related to a latent heat which is
supplied to or extracted from the medium without changing its
temperature.

These types of phase transitions correspond to a discontinuity of the
first derivative of E and are called first-order phase transitions.

In these situations, the observed order parameters also jump
discontinuously at the transition temperature.

To describe these phenomena, we retake the free energy expansion
and we aim at modeling a situation in which η = 0 is the observed
value of the state parameter above a critical temperature Tc, but
below Tc a new stable phase arises.
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The first-order theory of phase transitions

We describe a model in which η = 0 is a nondegenerate local
minimum, hence a stable phase, for the free energy for all values of
the temperature T (and the only minimizer when T > Tc), but a new
stable phase arises when T ≤ Tc, with the new phase becoming a
global minimizer when T < Tc.

Here, we are not assuming that the free energy is symmetric in η. The
condition that η = 0 is a critical point gives that a1 must necessarily
vanish for all T , therefore the free energy is

a2(T) η2 + a3(T)η3 + a4(T)η4.
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The first-order theory of phase transitions

The condition that η = 0 is a nondegenerate local minimum yields that

a2(T) > 0.

The condition that the energy is bounded from below (thus producing
minimizers) also gives that

a4(T) > 0.

The phase transition can be thus modeled on the specific properties
of a3(T). Namely, the assumption that η = 0 is the only minimizer
for T > Tc says that

a2(T) + a3(T)η + a4(T)η2 > 0 for all η ∈ R and T > Tc.
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The first-order theory of phase transitions

Also, we assume that at T = Tc a new minimizer, say at η = η⋆ > 0,
occurs, whence

a2(Tc) η2
⋆ + a3(Tc)η3

⋆ + a4(Tc)η4
⋆ = 0.

The existence of a global minimum different from η = 0 below the
critical temperature translates into

min
η∈R

a2(T) η2 + a3(T)η3 + a4(T)η4 < 0 for all T < Tc.

An example of coefficients satisfying all these conditions is, for
instance:
Tc := 2, a2(T) := 1,

a3 a smooth and increasing function such that a3(T) < 2 for all T ∈ R

with a3(T) = T − 4 for all T ≤ 5,

a4(T) := 1 and η⋆ := 1.
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The first-order theory of phase transitions

In this model case, the global minima of the free energy are described
by 

{0} if T > 2,

{0, 1} if T = 2,12 − 3T +
√

9T2 − 72T + 112
8

 if T < 2,
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The first-order theory of phase transitions

The bifurcation diagram for the minimizers is therefore
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The first-order theory of phase transitions

This shows a discontinuous jump at the critical temperature for the
minima of the free energy, which corresponds to the abrupt formation
of a new stable phase.

The free energy as a function of temperature takes the form

E(T) :=

0 if T ≥ Tc,

a2(T) η2(T) + a3(T) η3(T) + a4(T) η4(T) if T < Tc.

As a result,

lim
T↗Tc

E
′(T)

= a′2(Tc) η2(Tc) + a′3(Tc) η3(Tc) + a′4(Tc) η4(Tc)

+
(
2a2(Tc) η(Tc) + 3a3(Tc) η2(Tc) + 4a4(Tc) η3(Tc)

)
η′(Tc)

= a′2(Tc) η2(Tc) + a′3(Tc) η3(Tc) + a′4(Tc) η4(Tc).
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The first-order theory of phase transitions

One can check that this quantity is always nonnegative (and strictly
positive in “nondegenerate” cases).

The strict inequality corresponds to the typical situations in the
so-called first-order phase transitions, in which the derivative of the
free energy with respect to temperature is discontinuous at the critical
temperature, which in turn corresponds to a physical situation in
which a latent heat is emitted or absorbed by the system when the
phase change occurs.
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The first-order theory of phase transitions

In the model case,

E(T) =



0 if T ≥ 2,

1
512

[√
9T2 − 72T + 112

(
9T3
− 108T2 + 400T − 448

)
−27T4 + 432T3

− 2448T2 + 5760T − 4736
] if T < 2

and so
lim
T↗2
E
′(T) = 1 > 0 = lim

T↘2
E
′(T),

showing the occurrence of the discontinuity at the critical temperature
of the first derivative of the free energy with respect to temperature.

81 / 169



Putting our hands into phase transitions

Inspired by Gibbs’ work, in 1874 Maxwell spent an entire winter to
make a three-dimensional clay sculpture (also replicated in several
plaster casts, one of which was sent by Maxwell to Gibbs as a gift)
representing the energy of a fictitious substance with respect to
volume and entropy.
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Putting our hands into phase transitions

In this sculpture, one can recognize the principal features of phase
transitions and latent heat formation via simple geometrical
operations, such as placing a flat sheet of glass to mimic the tangent
plane of the surface, or placing the model in sunlight and tracing the
curve when the rays graze the surface.

In 2005, the United States Postal Service issued a 37 cents
commemorative postage stamp honoring Gibbs. Next to Gibbs’s
portrait, the stamp features a diagram illustrating a thermodynamic
surface. Also, an almost invisible microprinting on the collar of
Gibbs’ portrait depicts the equation dε = t dη − p dv (in Gibbs’
notation, ε stands for internal energy, t for temperature, η for entropy,
p for pressure and v for volume).
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Interfacial energy of phase transitions

The description of phase models so far focused only on the favorable
configurations of the free energy which support one phase over the
other, but

how are two different coexisting phases separated?

What is the geometry is of the domains corresponding to each
phase?
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Interfacial energy of phase transitions

For this, note that the coexistence of two phases occurs when they
both attain the minimal value of the free energy: this is precisely the
case of first-order phase transitions at the critical temperature and of
second-order phase transitions at the critical temperature or below it.

In principle, when two minima of the free energy occur at the same
level, the two phases are equally favorable from an energetic point of
view, hence any configuration in which any point of the state lies in
any of the two phases is as good as any other.

This however is in contradiction with common experience, since in
many phenomena the change of phase between different regions of
the space occurs in very specific regions.
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Interfacial energy of phase transitions

The model of “pure phases” is possibly “too abrupt”, since small
fluctuations produce values of the state parameter which are not
precisely equal to either of the two phases.

To model these fluctuations, one can consider the order parameter η as
a function of the continuous spatial coordinates and assume that the
fluctuations are the byproduct of the mutual interaction between
regions of spaces corresponding to a different state parameter.

A crude, but perhaps efficient, model is to assume that the effective
energy of the system comes from the free energy, plus an interaction
term between different phases.
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Interfacial energy of phase transitions

The introduction of this interaction term dates back at least to Van der
Waals, who considered molecular interactions as averaged over long
ranges. One of the additional benefits of such an interaction term is to
penalize the unnecessary changes of phase and favor, among all the
configurations which minimize the free energy, the ones which
present a “minimal interface” between regions with different phases.

The precise notion of minimal interface certainly depends on the
additional interaction term that one takes into account, thus we
describe now some specific choices of interest. Considering the
spatial domain the whole of Rn, one can take into account an
interaction energy of the form"

Rn×Rn
(η(x) − η(y))2

K (x, y) dx dy.
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Interfacial energy of phase transitions

Ideally, one may want to determine a precise interaction kernel from general first
principles.

However, due to the complexity of natural phenomena, in many concrete situations,
the precise determination of an interaction kernel may be based on phenomenological
considerations, interpretation of experimental data, or even, more frequently than one
may think at a first, on the opportunity of finding useful computational
simplifications.

As an example of “convenient choice” of an interaction kernel, we recall the fact that,

in the development of his new theory of gases based on statistical physics, James

Clerk Maxwell introduced an interaction kernel based on the inverse fifth power of

the molecular distance. Actually, it seems that the model was possibly taking into

account the general case of the κth power of the distance: according to several

historical reconstructions, Maxwell admitted that this choice of κ = 5 less from the

physical consequences of the choice than from the attractiveness of the possibility of

explicit integration.
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historical reconstructions, Maxwell admitted that this choice of κ = 5 less from the

physical consequences of the choice than from the attractiveness of the possibility of

explicit integration.
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Interfacial energy of phase transitions

If we assume the kernelK to be symmetric under translations and
rotations, we have that

K (x, y) = K (x − y, y − y)
= K (x − y, 0) = K (|x − y|e1, 0) =: K(|x − y|).
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Interfacial energy of phase transitions

If additionally the kernel is short-range, i.e. it vanishes
whenever |x − y| ≥ ϱ, for some small ϱ > 0,∫

Rn

∫
Bϱ(x)

(η(x) − η(y))2 K(|x − y|) dy

 dx

=

∫
Rn

∫
Bϱ(x)

(
∇η(x) · (x − y) + O(σ(x) |x − y|2)

)2
K(|x − y|) dy

 dx

=

∫
Rn

∫
Bϱ

(
∇η(x) · z + O

(
σ(x) |z|2

))2
K(|z|) dz

 dx

=

∫
Rn

∫
Bϱ

(
∇η(x) · z

)2
K(|z|) dz

 dx +
∫
Rn

∫
Bϱ

O(σ2(x) |z|3) K(|z|) dz

 dx

=

∫
Rn

∫
Bϱ

|∇η(x)|2 z2
1 K(|z|) dz

 dx +
∫
Rn

∫
Bϱ

O(σ2(x) |z|3) K(|z|) dz

 dx

=C
∫
Rn
|∇η(x)|2 dx + O(Cϱ),

where σ(x) := ∥η∥C2(Bϱ(x)) and C :=
∫
Rn z2

1 K(|z|) dz. 115 / 169



Interfacial energy of phase transitions

Accordingly, for ϱ sufficiently small, the interaction term can be
approximated by ∫

Rn
|∇η(x)|2 dx.

The coexistence of two phases for first-order phase transitions at the
critical temperature and of second-order phase transitions at the
critical temperature or below it produces, in a container Ω, the energy
functional ∫

Ω

|∇η(x)|2 dx +
∫
Ω

W(η(x)) dx,

where W is a double-well potential (e.g., with η prescribed outside Ω,
or equivalently along ∂Ω).
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Interfacial energy of phase transitions

The phase separation in this case is dictated by the usual surface
tension aiming at making the interface a codimension 1 surface with
the least possible (n − 1)-dimensional area.

To see this, at least heuristically, one considers a rescaling of the
energy in which the gradient term is explicitly a penalization of the
double-well potential responsible of the phase separation.
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Interfacial energy of phase transitions

That is, for a small parameter ε > 0, one takes into account the energy
functional

ε

∫
Ω

|∇η(x)|2 dx +
1
ε

∫
Ω

W(η(x)) dx.

By the Cauchy-Schwarz Inequality and the Coarea Formula, one can
bound this quantity from below by∫

Ω

|∇η(x)|
√

W(η(x)) dx =

∫ 1

−1

[∫
Ω∩{η(x)=τ}

√
W(τ) dHn−1

x

]
dτ

=

∫ 1

−1

√
W(τ)Hn−1

(
Ω ∩ {η = τ}

)
dτ,

whereHn−1 denotes the (n − 1)-dimensional Hausdorff measure.
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Interfacial energy of phase transitions

Also, for small ε, we may think that the energy minimizers try to
“optimize” the above lower bound and to sit in the zeros (or close to
the zeros) of the double-well potential as much as possible.

Therefore, for small ε, the minimal energy is expected to be related to

cHn−1
(
Ω ∩ (∂E)

)
where c :=

∫ 1

−1

√
W(τ) dτ,

being E a set in which the order parameter is “essentially” equal to +1
and the complement of E a set in which the order parameter is
“essentially” equal to −1.
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Interfacial energy of phase transitions

For long-range interactions, the gradient approximation is not
available anymore and we have a nonlocal energy term of the form"

Q(Ω)
(η(x) − η(y))2 K(|x − y|) dx dy +

∫
Ω

W(η(x)) dx,

where
Q(Ω) := (Ω ×Ω) ∪ (Ωc

×Ω) ∪ (Ω ×Ωc),

being Ωc := Rn
\Ω.

The notation Q(Ω) stands for a “cross-shaped set” (“Q” stands for
cross, since “C” is used for constants and “K” for kernels!).
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Interfacial energy of phase transitions

The intuition behind Q(Ω) is that we are prescribing here the order
parameter η outside the domain Ω, which is the “global” counterpart
of prescribing η along ∂Ω.

Accordingly, the long-range energy functional should account for all
the configurations which involve the values of the state parameter
in Ω: whatever piece of energy containing only the values of the state
parameter outside Ω is prescribed, whence does not influence energy
minimization (interestingly, in this way, one considers the energy
confined outside the domain as “constant”, even if this constant can
actually be infinite!).

In this spirit, the cross-shaped set accounts for all the phase
interactions in which at least one of the sites is located in Ω.
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Interfacial energy of phase transitions

Special cases of kernels K are the ones which are positively
homogeneous of some degree d, that is K(|tz|) = tdK(|z|) for
all z ∈ Rn

\ {0} and t ∈ (0,+∞).

Note that the degree d cannot be arbitrarily chosen in the reals, since
to make sense of the interaction energy it is desirable to have it finite
at least when η ∈ C∞0 (Ω, [0, 2]) with η(x) = 2 − |x − x0|

2 for
all x ∈ Br(x0), for some small r ∈ (0, 1) such
that B2r(x0) ⊆ Ω ⊆ B1/r(x0). Hence,

d ∈ (−n − 2,−n).
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Interfacial energy of phase transitions

So, necessarily

K(|z|) = |z|d K(|e1|) =
1
|z|n+α

,

for some α ∈ (0, 2) and"
Q(Ω)

(η(x) − η(y))2

|x − y|n+α
dx dy +

∫
Ω

W(η(x)) dx.
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Interfacial energy of phase transitions

When α ∈ (0, 1), the minimizers can be easily related to a geometric
minimization problem, since if

η(x) = χE(x) − χEc(x) =
{

1 if x ∈ E,

−1 if x ∈ Ec,

for some E ⊆ Rn, then the energy functional boils down to"
Q(Ω)∩(E×Ec)

4
|x − y|n+α

dx dy = Perα(E,Ω).

Interestingly, when α ∈ [1, 2), the limit interfaces will be instead
related to the minimizers of the classical perimeter, showing a
remarkable “localization effect for nonlocal energies” when the
interaction parameter α is larger than or equal to 1.
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Interfacial energy of phase transitions

Road plan:

Understand better the minimizers (and the critical points, and the
quasi-minimizers, etc.) of the short-range and long-range phase
transition energy functionals,

Understand better the link between the short-range and
long-range phase transition energy functionals with the limit
geometric problem,

Understand better the structure of the minimizers (and the critical
points, and the quasi-minimizers, etc.) limit geometric problem,

Understand better the influence of the structure of the minimizers
(and the critical points, and the quasi-minimizers, etc.) limit
geometric problem on the corresponding objects for the
short-range and long-range phase transition energy functionals.
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Minimal surfaces

The first and second variations of the perimeter functional can be
explicitly computed in terms of the mean curvature H and of the
norm c of the second fundamental form.

More precisely, one can consider a domain Ω ⊂ Rn, a set E ⊂ Rn and
a function ϕ ∈ C∞0 (Ω) such that ∂E is a hypersurface of class C2 in
the support S of ϕ.

Thus, we take the exterior normal vector ν to E in S, consider the
vector field ϕν (extended to 0 outside S).
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Minimal surfaces

We denote by Et the flow of the set E along this vector field.

S
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Minimal surfaces

Then, as t→ 0,

Per(Et,Ω) = Per(E,Ω) + t
∫
∂E

H(x)ϕ(x) dHn−1
x

+
t2

2

∫
∂E

(
|∇Tϕ(x)|2 − (c2(x) − H2(x))ϕ2(x)

)
dHn−1

x + o(t),

where the tangential gradient is given by

∇Tϕ = ∇ϕ − (∇ϕ · ν)ν.
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Minimal surfaces

Therefore, a critical point for the perimeter functional is (regularity
allowing) a hypersurface with vanishing mean curvature and a
minimizer satisfies additionally that∫

∂E

(
|∇Tϕ(x)|2 − c2(x)ϕ2(x)

)
dHn−1

x ⩾ 0

for every test function ϕ ∈ C∞0 (Ω).

One says that a vanishing mean curvature hypersurface is stable if the
latter condition is satisfied (in particular, local minimizers are stable).
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Minimal surfaces

One of the chief results in the classical theory of minimal surfaces is
that:

Theorem (Simons 1968 (version 1))
Perimeter minimizers are smooth in dimension n ≤ 7.

The dimensional assumption is optimal, since minimal cones occur in
dimension n ≥ 8, as constructed by [Bombieri, De Giorgi, Giusti
1969].
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Minimal surfaces

The result by Simons is proved by reducing, after a blow-up procedure
and a dimensional reduction, to the case in which the minimal
surface E under consideration is a cone (namely, if p ∈ E then tp ∈ E
for all t > 0) and its only possible singularity is at the origin.

Thus, in this setting, the result by Simons (version 1) is a consequence
of

Theorem (Simons 1968 (version 2))
A vanishing mean curvature cone cone in Rn with n ≤ 7 which is
stable and smooth outside the origin is necessarily a halfplane.
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Minimal surfaces

The proof of this relies on a beautiful inequality of geometric type:

Theorem (Simons 1968 (version 3))
At every regular point of a cones E with zero mean curvature (not
necessarily stable), it holds that

∆Tc2

2
≥ |∇Tc|2 +

2c2

|x|2
− c4.

Here ∆T is the Laplace-Beltrami operator, which can be defined, for
instance, in the distributional sense via the tangential gradient, for
smooth and compactly supported functions f and g, by∫

∂E
∆T f (x) g(x) dHn−1

x = −

∫
∂E
∇T f (x) · ∇Tg(x) dHn−1

x .
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Minimal surfaces

Proof that version 3 implies version 2. We consider a test function ζ
and exploit the stability inequality with ϕ := cζ, finding that

0 ≤

∫
∂E

(
|ζ(x)∇T c(x) + c(x)∇Tζ(x)|2 − c4(x) ζ2(x)

)
dHn−1

x

=

∫
∂E

(
|ζ(x)∇T c(x)|2 + |c(x)∇Tζ(x)|2 +

1
2
∇T c2(x) · ∇Tζ

2(x) − c4(x) ζ2(x)
)

dHn−1
x

=

∫
∂E

(
ζ2(x)|∇T c(x)|2 + c2(x)|∇Tζ(x)|2 −

∆T c2(x)
2
ζ2(x) − c4(x) ζ2(x)

)
dHn−1

x .

Combining this with version 3, we infer that∫
∂E

2c2(x) ζ2(x)
|x|2

dHn−1
x ≤

∫
∂E

c2(x) |∇Tζ(x)|2 dHn−1
x .
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Minimal surfaces

Given α, β ∈ R, and ε ∈ (0, 1), we consider τε ∈ C∞0
(
B2/ε \ Bε, [0, 1]

)
with τε = 1 in B1/ε \ B2ε with

|∇τε| ≤
4
ε
χB2ε\Bε + 4εχB2/ε\B1/ε .
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Minimal surfaces

Let also ζε := τεφε, with

φε(x) :=
|x|α

2

(√(
|x|β − 1

)2
+ ε + |x|β + 1

)
.

The idea is to use ζε as a test function and pass to the limit as ε↘ 0.
For this approximation method to work, we will need to choose
appropriately the parameters α and β, which, in turn, will be possible
only under the dimensional restriction.

For this, we note that

lim
ε↘0
ζε(x) = lim

ε↘0
φε(x) =

|x|α

2

(∣∣∣|x|β − 1
∣∣∣ + |x|β + 1

)
=

{
|x|α+β if x ∈ Rn

\ B1,

|x|α if x ∈ B1.
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Thus, Fatou’s Lemma entails that

lim inf
ε↘0

∫
∂E

2c2(x) ζ2
ε(x)

|x|2
dHn−1

x

≥

∫
(∂E)∩B1

2c2(x) |x|2α−2 dHn−1
x +

∫
(∂E)\B1

2c2(x) |x|2α+2β−2 dHn−1
x .
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Furthermore, since E is a cone, its curvatures are positively
homogeneous of degree −1 and therefore, for all x ∈ Rn

\ {0},

|c(x)| =

∣∣∣∣c (
x
|x|

)∣∣∣∣
|x|

≤
M
|x|
, where M := max

(∂E)∩(∂B1)
|c|.
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As a result,∫
(∂E)∩B1

2c2(x) |x|2α−2 dHn−1
x +

∫
(∂E)\B1

2c2(x) |x|2α+2β−2 dHn−1
x

≤ 2M2

[∫
(∂E)∩B1

|x|2α−4 dHn−1
x +

∫
(∂E)\B1

|x|2α+2β−4 dHn−1
x

]
= 2M2

[∫ 1

0
ρ2α−4

H
n−2

(
(∂E) ∩ (∂Bρ)

)
dρ +

∫ +∞

1
ρ2α+2β−4

H
n−2

(
(∂E) ∩ (∂Bρ)

)
dρ

]
= 2M2

H
n−2

(
(∂E) ∩ (∂B1)

) [∫ 1

0
ρ2α+n−6 +

∫ +∞

1
ρ2α+2β+n−6 dρ

]
= 2M2

H
n−2

(
(∂E) ∩ (∂B1)

) [ 1
2α + n − 5

−
1

2α + 2β + n − 5

]
< +∞,

as long as

2α + n − 5 > 0 and 2α + 2β + n − 5 < 0.
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One can also calculate that

|∇φε(x)| ≤ C max{|x|α+β−1, |x|α−1
},

for some C > 0 depending only on α and β.
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From these pieces of information, it follows that∣∣∣∣∣ ∫
∂E

c2(x) |∇Tζε(x)|2 dHn−1
x −

∫
∂E

c2(x) |∇Tφε(x)|2 dHn−1
x

∣∣∣∣∣
≤ C

∫
(∂E)∩

(
B2ε∪(Rn\B1/ε)

) c2(x) |∇φε(x)|2 dHn−1
x +

∫
∂E

c2(x) |∇τε(x)|2 |φε(x)|2 dHn−1
x


≤ C

[ ∫
(∂E)∩

(
B2ε∪(Rn\B1/ε)

) max{|x|2α+2β−4, |x|2α−4
} dHn−1

x

+

∫
∂E∩B2ε

ε−2
|x|2α−2 dHn−1

x +

∫
∂E\B1/ε

ε2
|x|2α+2β−2 dHn−1

x

]
≤ C

(
ε2α+n−5 + ε5−2α−2β−n

)
,

which is infinitesimal.
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Thus,∫
(∂E)∩B1

2c2(x) |x|2α−2 dHn−1
x +

∫
(∂E)\B1

2c2(x) |x|2α+2β−2 dHn−1
x

≤ lim inf
ε↘0

∫
∂E

2c2(x) ζ2
ε(x)

|x|2
dHn−1

x

≤ lim inf
ε↘0

∫
∂E

c2(x) |∇Tζε(x)|2 dHn−1
x

= lim inf
ε↘0

∫
∂E

c2(x) |∇Tφε(x)|2 dHn−1
x

⩽ lim inf
ε↘0

∫
∂E

c2(x) |∇φε(x)|2 dHn−1
x .
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And so, by the Dominated Convergence Theorem,∫
(∂E)∩B1

2c2(x) |x|2α−2 dHn−1
x +

∫
(∂E)\B1

2c2(x) |x|2α+2β−2 dHn−1
x

≤

∫
∂E

c2(x) lim
ε↘0
|∇φε(x)|2 dHn−1

x

=

∫
(∂E)∩B1

α2c2(x) |x|2α−2 dHn−1
x +

∫
(∂E)\B1

(α + β)2c2(x) |x|2α+2β−2 dHn−1
x ,

that is∫
(∂E)∩B1

κ1 c2(x) |x|2α−2 dHn−1
x +

∫
(∂E)\B1

κ2 c2(x) |x|2α+2β−2 dHn−1
x ≤ 0

where κ1 := 2 − α2 and κ2 := 2 − (α + β)2.
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If 3 ≤ n ≤ 7 we can choose

α :=
5 − n

4
+

√
2

2
and β := −

√

2,

obtain that κ1 and κ2 are strictly positive and conclude the proof of
version 2!
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We also recall that the regularity of minimal surfaces is strictly linked
to the so-called Bernstein’s problem which asks whether or not a
minimal graph in Rn (i.e., a minimal surface which possesses a global
graphical structure of the form xn = u(x′) with x′ ∈ Rn−1) is
necessarily affine.

The answer to this problem is affirmative in dimension n ≤ 8 because
(by [De Giorgi 1965]) if all minimal cones in Rn−1 are halfplanes,
then Bernstein’s problem has an affirmative answer in Rn.
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